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Abstract

Global stability of �eld-reversed con�guration (FRC) plasmas has been stud-

ied using a simple rigid body model in the parameter space of s (ratio of

separatrix radius to average ion gyro-radius) and plasma elongation E (ratio

of separatrix length to separatrix diameter). Tilt stability is predicted, inde-

pendent of s, for FRC's with low E (oblate), while the tilt stability of FRC's

with large E (prolate) depends on s=E. It is found that plasma rotation due

to ion diamagnetic drift can stabilize the tilt mode when s=E <
�

1:7. The

so-called collisionless ion gyro-viscosity also is identi�ed to stabilize tilt when

s=E <
� 2:2. Combining these two e�ects, the stability regime broadens to

s=E <
�

2:8, consistent with previously developed theories. A small additional

rotation (e.g. a Mach number of 0.2) can improve tilt stability signi�cantly

at large E. A similar approach is taken to study the physics of the shift sta-

bility. It is found that radial shift is unstable when E < 1 while axial shift is

unstable when E > 1. However, unlike tilt stability, gyro-viscosity has little

e�ect on shift stability.

PACS numbers: 52.55.Hc, 52.35.Py
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I. INTRODUCTION

The �eld-reversed con�guration (FRC) is a unique toroidal magnetic con�nement scheme

in that there is no appreciable toroidal �eld. The plasma is con�ned purely by a poloidal

�eld, which is produced by a toroidal plasma current. Thus the current 
ows in the direc-

tion perpendicular to the local magnetic �eld, sustaining maximum possible plasma beta

close to unity. On the other hand, due to the lack of a center conductor and a con�ning

toroidal �eld, FRC's are predicted to be unstable to many global magnetohydrodynamic

(MHD) modes. However, FRC plasmas formed in �-pinch devices exhibit remarkable global

stability1 with a few exceptions2. Much theoretical e�ort has been made to reveal stabi-

lizing mechanisms of the predicted instabilities (tilt mode in particular), including e�ects

from plasma rotation3{5, two-
uid5, ion �nite Larmor radius (FLR)6{10, energetic ions11;12,

and current pro�le13{15. Although agreement between theory and experiment has improved

over the years, few concrete physical pictures of stabilizing mechanisms have been given. In

this paper, a simple equation of motion for each global mode is formulated and analyzed

using a rigid body model of the FRC plasma. The strategy taken here is to elucidate semi-

quantitatively the essential physics for stabilizing mechanisms by using the simplest possible

equations. Although the deduced marginal stability condition may not be su�cient due to

the limited degrees of freedom of rigid body motion, the analyses described below should

shed new light in understanding the fundamental physics of FRC stability.

After a brief description of FRC models in Sec. II, tilt stability is analyzed in detail

in Sec. III, including e�ects from J � B torque, plasma rotation due to ion diamagnetic

drift, ion gyro-viscosity, and E �B rotation. In Sec. IV, axial and radial shift stability is

analyzed, followed by discussions and conclusions.
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II. MODELS OF FRC PLASMAS

A. Solovev model of FRC plasmas

The global modes of a plasma are often destabilized by the j�B force, which is usually

a strong function of plasma shape, e.g., plasma elongation de�ned by ratio of separatrix

length to separatrix diameter. Here j is the internal current density of the plasma and

B is the vacuum �eld produced by external coil currents. To quantify this force, an FRC

equilibrium solution with known vacuum �eld is needed. The simplest analytic model of

FRC equilibrium with arbitrary elongation is the Solovev's solution16 given by

 =  0

2
41 � � RZ

R0Z0

�2
�
 
R2

R2
0

� 1

!2
3
5 ;

where  is the poloidal 
ux function, R0 is the radius of magnetic axis, and Z0 is de�ned

in Fig. 1(a). As is also obvious from Fig. 1(a), the length and radius of FRC separatrix are

L = 2
p
2Z0 and Rs =

p
2R0, respectively, resulting in an elongation E � L=(2RS) = Z0=R0.

The trapped 
ux 2� 0 is related to the magnetic �eld at the edge B0 � BZ(R = Rs; Z = 0)

by 2� 0 = �B0R
2
s. When E = 1, Solovev's solution reduces to the well-known spherical

Hill's vortex17 with an analytic external solution. The vacuum solution for arbitrary E is

obtained numerically by placing coils around the plasma. The coil currents are calculated

by matching 
ux values at the separatrix (see Appendix for detail). One such example is

shown in Fig. 1(a) where the internal (external) 
ux is represented by solid (dotted) lines.

The vacuum 
ux together with coil locations is separately shown in Fig. 1(b).

B. Cylindrical Rigid Body Model

In order to elucidate the essential physics of FRC global stability, we use an even simpler

cylindrical rigid body model [rectangular box in Fig. 1(a)] to analyze the motion of each

mode. The cylinder is �lled with a plasma of uniform density n, radius Rs, and length

2Z0 = ERs=
p
2. As a result, the moments of inertia of the cylindrical plasma with respect

to each axis (see Fig. 2) are given by
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IX = IY =
MtotalR

2
s

4
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E2
�
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2
s

2

where Mtotal �
p
2�R3

sEnmi is the total mass (mi = ion mass).

One question which could arise is whether the global modes in this model are internal or

external. An apparent answer is that they are external. However, we note that qualitatively

they can be \internal" if the modeled region is smaller than the separatrix, i.e., R < Rs.

In this respect, the nature of the analyzed modes can include internal behavior, as will be

discussed later. Below, the analysis of the tilt and shift global modes using this simple model

is described.

III. TILT STABILITY

The tilt instability has been regarded as the most dangerous in FRC's, although it has

not been observed consistently in the traditional �-pinch formation scheme. Theoretically,

it has been shown to be unstable in plasmas with large E due to the destabilizing j �B
force, but it can be stabilized by many non-MHD e�ects. In this section, the simplest

possible model is constructed to reveal the stabilizing physical mechanisms of this mode.

The simplest model relating the j�B force to the decay index ndecay (� �(R=BZ)@BZ=@R)

of the external �eld produced by the coils is the current ring model used in the study of

spheromak tilt stability18. However, this model does not provide a link between ndecay and

plasma elongation E, which is important in FRC tilt stability and will be dealt with in

this paper. Instead, we use the Solovev model to calculate directly the tilt stabilizing or

destabilizing j �B force as a function of E.

A. J�B Torque

In FRC's, the internal current 
ows in the � (�Z in Fig. 2) direction and is de-

noted by j� = (�j� sin �; j� cos �; 0). This j� interacts with the vacuum �eld BV =

[BR(R;Z) cos �;BR(R;Z) sin �;BZ(R;Z)], resulting in a torque \density" n(r) = r � (j� �
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BV ), where r is the position vector, (R cos �;R sin �; Z). Before tilting, however, the total

torque N =
R
ndV integrated over the whole plasma volume is zero. After the plasma tilts

a small angle, a responding torque N 1 arises either to accelerate the tilting or to restore

the plasma to its original equilibrium, depending on the vacuum �eld provided for each

plasma shape (elongation). Without losing generality, this responding torque N 1 =
R
n1dV

is calculated as a �rst order perturbation in tilting angle �X with respect to the X axis.

Instead of tilting the plasma an angle �X with respect to the stationary background

vacuum �eld, one simple way to calculate the perturbed torque n1 is to use the plasma

frame of reference and to tilt the background vacuum �eld an angle ��X. In the plasma

frame, the vectors r and j� are unperturbed, therefore, n1 can be evaluated simply from

the perturbed vacuum �eld BV 1, i.e., n1 = r � (j� �BV 1). To �rst order in �X , this n1 is

the same both in the plasma frame and the vacuum �eld frame.

The vacuum �eld perturbation at r comes from two e�ects: (1) direction change due to

tilting, and (2) magnitude change due to the fact that a di�erent �eld originally located at

r0 = (R0 cos �;R0 sin �; Z 0) moves into the current location r as a result of tilting:

BV =

0
BBBBBB@
BR(R;Z) cos �

BR(R;Z) sin �

BZ(R;Z)

1
CCCCCCA
!

0
BBBBBB@

BR(R
0; Z 0) cos �

BR(R0; Z 0) sin � cos �X �BZ(R0; Z 0) sin �X

BZ(R0; Z 0) cos �X +BR(R0; Z 0) sin � sin �X

1
CCCCCCA
:

Here R0 and Z 0 are related to R and Z by R0 � R + �XZ sin � and Z 0 � Z � �XR sin �.

Therefore,

B(R0; Z 0)�B(R;Z) � @B

@R
(R0 �R) +

@B

@Z
(Z 0 � Z) � �X sin �

 
Z
@B

@R
�R

@B

@Z

!
;

where B = BR or BZ. Then the �rst order change in the vacuum �eld is given by

BV 1 = �X

0
BBBBBB@

sin � cos �
�
Z @BR

@R
�R@BR

@Z

�
sin2 �

�
Z @BR

@R
�R@BR

@Z

�
�BZ

sin �
�
Z @BZ

@R
�R@BZ

@Z

�
+BR sin �

1
CCCCCCA
:

With use of
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r �B =
1

R

@(RBR)

@R
+
@BZ

@Z
= 0;

@BR

@Z
=
@BZ

@R
;

the perturbed torque can be calculated and simpli�ed to

n1 = �Xj�

0
BBBBBB@
�RBZ(1 � ndecay) sin2 �
RBZ(1� ndecay) sin � cos �

0

1
CCCCCCA
;

where ndecay is a generalized decay index including e�ects from the j � B force o� the

mid-plane (Z 6= 0),

ndecay = � R

BZ

"
@BZ

@R
� Z

R2

@

@R
(2RBR + ZBZ)

#
:

Clearly, the total torque N 1 =
R R R

n1RdZdRd� does not have Y nor Z components while

the X component is given by N1X = ���X R R j�R2BZ(1 � ndecay)dZdR. By using j� =

B0R(4 + 1=E2)=�0R2
s in the Solovev's model, N1X can be written as

N1X = ��XR
3
s

B2
0

�0

�
4 +

1

E2

�
�tilt; �tilt =

Z Z
R3BZ(1 � ndecay)

R5
sB0

dZdR; (1)

where the non-dimensional parameter �tilt can be calculated numerically as a function of E,

as plotted in Fig. 3. This �tilt can be �t to 0:02E+0:342�0:225=E+0:0425=E2�0:00329=E3.

When a small �Y is introduced, the responding torque N1Y has the same expression as N1X

but with �X replaced by �Y .

Figure 4 shows the normalized j �B torque as a function of E. It can be seen that if

E <� 0:5, the j � B torque is negative. In other words, it restores the plasma toward its

equilibrium position due to a strong mirror �eld. When E >� 0:5, the FRC is tilt unstable,

consistent with previous MHD studies19. We note that the force from the plasma pressure

gradient should not contribute to the tilting torque since it is balanced by the unperturbed

j �Bint during tilting, where Bint is the �eld produced by the internal current.

B. Stabilizing e�ect from plasma rotation

It is well known that plasma rotation in the � direction can help stabilize the tilt mode3{5.

In this subsection, the simplest possible equations using the rigid body model are used to
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study this e�ect. The three-axis rigid body rotation is governed by Euler's equations20,

IX ��X � (IY � IZ) _�Y _�Z = NX

IY ��Y � (IZ � IX) _�Z _�X = NY

IZ ��Z � (IX � IY ) _�X _�Y = NZ ;

which can be simpli�ed since IX = IY � I, NX=�X = NY =�Y � N , and _�Z = const. � 


with no net driving torque in the Z direction, i.e.. NZ = 0. Then the reduced equations are

I ��X � (I � IZ)
 _�Y �N�X = 0 (2)

I ��Y + (I � IZ)
 _�X �N�Y = 0: (3)

Taking the derivative of Eq. (3) and substituting _�Y from Eq. (2), we have a fourth order

di�erential equation for �X,

I2�
(4)
X + (b2 � 2IN)��X + N2�X = 0;

where b = (I � IZ)
. Assuming that the solutions have the form �X = �X0 exp(�i!t), a
fourth order algebraic equation for ! is obtained,

I2!4 � (b2 � 2IN)!2 + N2 = 0;

which yields a solution of !2 = (b2�2IN �pb4 � 4INb2)=2I2. The necessary and su�cient

condition for ! to be real is

[(I � IZ)
]
2 � 4IN; (4)

which provides the minimum plasma rotation to stabilize the tilt, as plotted in Fig. 5.

A stable region appears at large elongation. This can be understood due to the fact that

rotational stabilization becomes more e�ective when the di�erence in the moments of inertia

between the tilting axis and the Z axis becomes larger.

In FRC plasmas, a large ion pressure gradient rpi exists due to a large plasma beta

dominated by ion beta. An inherent plasma rotation arises from the ion diamagnetic drift
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since ions carry most of the plasma momentum. The magnitude of this naturally occurring

rotation can be estimated as

Mdiamag =
V�
vthi

=
rpi

enBvthi
� Rs

�R

1

s
; (5)

where �R is the radial scale length of pi, vthi is the ion thermal velocity, and s is de�ned as

the ratio of Rs to average ion gyro-radius. [This s is approximately equivalent to S� de�ned
as Rs=(c=!pi) and roughly four times larger than �s � RRs

R0
RdR=Rs�i.]

The stability condition can be determined in the parameter space of s and E using this

diamagnetic rotation, as shown in Fig. 6 where �R = Rs�R0 is assumed. A stable window

appears at low s and large E (s=E <� 1:7), consistent with a previous study5 where an

ion diamagnetic rotation was introduced to a two-
uid model. For a given E, the plasma

rotates faster for smaller s due to ion diamagnetic drift, while for a given s the rotational

stabilization becomes more e�ective with larger E as shown in Fig. 5.

C. Stabilizing e�ect from ion gyro-viscosity

The above analysis of FRC stability is based on a rigid body model, which is appropriate

for external tilting. However, as pointed out in Sec. IIB, this approach also models stability

properties of internal tilting since the modeled region can be smaller than the whole plasma

region, i.e., any inner part of the plasma. When only an inner part of the plasma tilts, the

internal structure or pro�les are deformed. If the typical ion gyro-radius is the same order

as or larger than the spatial scale of this deformation, responding forces can arise from ion

kinetic e�ects, in addition to the MHD force dealt with in Sec. IIA. The stabilizing e�ects of

ion kinetic motion have been considered by many authors6{10 in various schemes, but little

physical insight into the underlying mechanisms has been given. Below, we approach this

problem with minimum mathematical complications in an attempt to elucidate the physics

but at the acknowledged expense of obtaining only semi-quantitative results.

The so-called ion gyro-viscosity21 is one particular kinetic e�ect from ion gyro-motion.

If there are spatial variations in force, such as electric �eld force, ions tend to experience
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the variations over larger areas than electrons. If these variations are linear in space, ions

experience a larger force during one half of their cyclotron period and a smaller force during

the other half. As a result, the average force experienced can be approximated by the force

at the guiding center, resulting in a null kinetic e�ect. However, when the spatial variation is

more than linear, such as quadratic, the guiding center approximation fails due to incomplete

cancellation between forces during one gyro motion. In this case, in addition to the force at

the guiding center, a correction proportional to the second derivative (or curvature) of the

spatial variation is needed. When the force is perpendicular to the local magnetic �eld, the

correction can be expressed in a form proportional to the curvature of the corresponding

perpendicular 
ow, resulting in an e�ective viscosity often referred to as ion gyro-viscosity,

although it arises without collisions.

In FRC plasmas, the second radial derivative (or radial curvature) of the toroidal 
ow

due to ion diamagnetic drift is not negligible especially in the case of a hollow current pro-

�le since ions carry a large portion of the plasma current perpendicular to the local �eld.

Therefore, a correction force proportional to @2V�=@R2 arises in the radial direction, pointing

inward. (Confusion could arise here since the corresponding force for diamagnetic 
ow is

the ion pressure gradient force which appears only in the 
uid equations, in contrast with

an electric �eld which can be felt by each gyrating particle. However, the complete Bra-

ginskii treatment22 does give rise to such viscosity terms proportional to pressure curvature

regardless of the nature of the corresponding force.)

An intuitive cartoon of the gyro-viscous force before tilting is shown in Fig. 7(a). They

balance each other, resulting in a null tilting torque. However, when only an inner portion of

the FRC plasma tilts, one part of the plasma is compressed while another is decompressed,

resulting in changes in the gyro-viscous force, as indicated in Fig. 7(b). These perturbations

form a restoring torque against tilt. This restoring torque can be divided into two parts:

one from the sides of the FRC plasma and another from the ends, and they can be evaluated

separately.

A more quantitative expression for the viscosity tensor in the strong �eld limit with non-
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uniform V� has been given by Braginskii22 ,

�RR = �2

3

�0
R

@V�
@�

� �3
@V�
@R

; �R� = �2

3

�3
R

@V�
@�

; �RZ = �2�3@V�
@Z

;

where �0 = 0:96nTi�i and �3 = nTi=2
i (�i is ion collision time and 
i is the ion cyclotron

frequency). Then the ion viscous force in the R direction is given by

FR = �
 
@�RR
@R

+
@�R�
R@�

+
@�RZ
@Z

!
=

2

3

�0
R

@2V�
@R@�

+ �3
@2V�
@R2

+
2

3

�3
R2

@2V�
@�2

+ 2�3
@2V�
@Z2

;

where the last term is small due to the nature of rigid body motion, i.e., V� changes only

linearly in the Z direction. The �rst term is due to the e�ect of so-called magnetic pumping

or parallel viscosity, but it contributes only a force parallel to the tilting axis. Thus no net

torque exists. The second and third terms are forces due to the gyro-viscosity mentioned

above. The relative strength of this force to the ion pressure gradient rpi is found to

be (R2
s=2�

2
R)(1=s

2). The increased importance for smaller s is consistent with physical

intuition.

Similar expressions for the gyro-viscous force acting at the ends of FRC plasmas can be

found with �Z denoting axial scales of V� near the ends. For a small tilting angle �X , �R

and �Z change by �R = Z�X sin � and �Z = R�X sin �, respectively. Then the perturbed

forces are

F1X = 3�R�3
V�
�3

R

sin �

 
1 +

2�2
R

9R2
s

!
=

3�XnTi
2s2

ZR2
s

�4
R

sin2 �

 
1 +

2�2
R

9R2
s

!

F1Z = 3�Z�3
V�
�3

Z

sin �

 
1 +

2�2
Z

9R2

!
=

3�XnTi
2s2

RR2
s

�4
Z

sin2 �

 
1 +

2�2
Z

9R2

!
;

where Eq. (5) has been used. Assuming F1X acts on the outer portion of the plasma with

thickness �R, and F1Z acts on each end of the plasma with thickness �Z, the restoring

torque can be calculated as

NGV = 2
Z Z0��Z

0

Z 2�

0
(F1XZ)Rsd�dZ�R

�
1 � �R

2Rs

�
+ 2

Z Rs��R

0

Z 2�

0
(F1ZR)Rd�dR�Z

=
3�XnTiR3

s

s2

Z 2�

0
sin2 �d�

" 
1 � fR

2

! 
1 +

2f2R
9

!Z Z0��Z

0

Z2

�3
R

dZ
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+
Z Rs��R

0

 
1 +

2�2
Z

9R2

!
R3

Rs�3
Z

dR

#

=
3��X
4

nTiR
3
s

s2

2
4
p
2

3

 
E

fR

!3  
1 � fR

2

! 
1 +

2f2R
9

! 
1 �

p
2fZ
E

!3

+
(1 � fR)4

f3Z
+

(1 � fR)2
9fZ

#
; (6)

where fR � �R=Rs and fZ � �Z=Rs.

If NGV is larger than the j � B torque, NJ�B from Eq.(1), the FRC plasma is tilt

stable. Figure 8 shows the stability diagram again in parameter space s and E, where

fR = (Rs � R0)=Rs and fZ = EfR are used. A stable window appears at low s and large

E (s=E <� 2:2), similar to the case of stabilization due to diamagnetic rotation. This trend

is consistent with previous analysis7;9, which employed the more thorough energy principle

but did not give a detailed physical picture. Also plotted in Fig. 8 are contributions from

the restoring torque, from the end (dashed line) and from the side (dash-dot line) of the

FRC plasmas shown in Fig. 7. The increased stability at low s and large E is because V�

becomes larger at small s [Eq.(5)] and because the restoring torque from the side becomes

more e�ective (due to larger arm) with larger E.

D. Tilt stability with plasma rotation and ion gyro-viscosity

Now we can examine FRC tilt stability combining the e�ects of plasma rotation and ion

gyro-viscosity. We de�ne the following dimensionless parameters, each of which represents

the contribution from a di�erent e�ect:

Krot =
E�ip
2

(1� 2E2=3)2

1 + 2E2=3

KGV = 3�if
2
R

2
4
p
2

3

 
E

fR

!3  
1 � fR

2

! 
1 +

2f2R
9

! 
1 �

p
2fZ
E

!3

+
(1 � fR)4

f3Z
+

(1 � fR)2

9fZ

3
5

KJ�B = 8E
�
4 +

1

E2

�
�tilt:

Then the stability condition can be deduced from Eq.(4) with an N which includes con-

tributions from both the j �B force [Eq.(1)] and the gyro-viscosity force [Eq.(6)], written
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as

KJ�B(fRs)
2 � (1 + fRsM)2Krot +KGV;

or

(KJ�B �M2Krot)(fRs)
2 � 2MKrot(fRs)�Krot �KGV � 0;

where M is a rotational Mach number in addition to the rotation due to ion diamagnetic

drift.

If M = 0, the stability condition can be reduced to

s2 <
Krot +KGV

f2RKJ�B
;

which is plotted in Fig. 9, where the stability window expands to s=E <� 2:8. If M 6= 0, i.e.,

there is an additional rotation due to E �B drift, then generally the stability improves as

shown in Fig. 10. A small additional rotation (such asM = 0:2) can stabilize tilt signi�cantly

at large E.

IV. SHIFT STABILITY

Similar approaches can be taken to study the other two types of rigid body motion of

an FRC plasma: axial shift and radial shift. The calculations are much simpler since they

are planar motions. Contributions from both j �B and ion gyro-viscosity are considered.

When the plasma shifts in the axial (Z) direction by �Z , the perturbed j �B force in

the Z direction is given by F1Z = �Z
R
j�@BZ=@RdV . Then the equation of motion is

M ��Z = 2��ZRs

B2
0

�0

�
4 +

1

E2

�
�shift; �shift =

Z Z
R2

R3
sB0

@BZ

@R
dZdR;

where the non-dimensional parameter �shift can be explicitly calculated as a function of E

and �t to �0:0132 � 0:168=E + 0:259=E2 � 0:0917=E3 + 0:0104=E4 (see Fig. 3).

Figure 11(a) shows the normalized j �B force as a function of E. If E <� 1, the axial

shift is stable due to a restoring j�B force. When E >� 1, the FRC is unstable to the axial
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shift mode. When only an inner part of the FRC plasma shifts axially, the ion gyro-viscosity

will provide a restoring force in the Z direction as in the tilt stability,

FGV = 3��Z
nTiRs

s2
(1� fR)2

f3Z
;

where the perturbed force is assumed to be active only at both ends of the plasma with

a thickness �Z. Then the stability condition is obtained by setting the gyro-viscous force

equal to the j �B force. Figure 11(b) shows a stability diagram in the parameter space of

s and E. Unlike the case of tilt stability, gyro-viscosity has little e�ect on the axial shift

stability except for in very small s regimes.

A very similar analysis can be applied to a small radial shift �X in the X direction. The

perturbed j �B force in the X direction is given by

F1X = �
Z
�Xj�

@BZ

@R
sin2 �dV = ���XRs

B2
0

�0

�
4 +

1

E2

�
�shift:

As shown in Fig. 12(a), the radial shift stability window is reversed compared to axial shift.

The stabilizing ion gyro-viscous force,

FGV =
3��Xp

2

nTiRs

f3Rs
2
E

 
1 �

p
2fZ
E

! 
1 +

2f2R
9

! 
1� fR

2

!
;

is found to have little e�ect in the radial shift case, as shown in Fig. 12(b).

V. DISCUSSIONS AND CONCLUSIONS

Despite the very simplemodels used in the present studies, much physical insight has been

gained regarding global stability of FRC plasmas. Tilt stability is predicted, independent

of s, for FRC's with low E (oblate), while tilt stability of FRC's with large E (prolate)

depends on s=E. It is found that plasma rotation due to ion diamagnetic drift can stabilize

the tilt mode when s=E <� 1:7. The so-called collisionless ion gyro-viscosity also is identi�ed

to stabilize tilt when s=E <� 2:2. Combining these two e�ects, the stability regime broadens

to s=E <� 2:8, consistent with existing theories. A small additional rotation (such as a Mach

number of 0.2) can improve tilt stability signi�cantly at large E. A similar approach is taken

13



to study the physics of shift stability. It is found that radial shift is unstable when E < 1

while axial shift is unstable when E > 1. However, unlike the tilt stability, gyro-viscosity

has little e�ect on the shift stability.

In an attempt to compare with experiments, Figure 13 plots the s � E tilt stability

diagram together with existing experimental observations24{27 in �-pinch devices. Without

E �B rotation, some experimental data are outside the stable regime. But with a certain

level of E � B rotation, all the data can be included in the stable regime, although a

consistent E �B rotation has not been experimentally established in these devices.

Of course, one should bear in mind that the above results are only semi-quantitative.

Also likely is that the stability windows shrink when non-rigid-body motions are taken into

account. A recent study23 shows that parallel viscosity due to both collisions or collisionless

pitch-angle scattering can smooth out variations along the �eld line thus making the motion

more rigid-body-like. On the other hand, the omitted e�ects of plasma compressibility (in-

cluding both thermal and magnetic)15 and sheared 
ows28 are likely to broaden the stability

window. Therefore, a more precise stability diagram would require a substantial theoretical

and numerical e�ort5;7, which is beyond the scope of the present work. Nonetheless, the

present work has elucidated two important stabilization mechanisms in detail for the FRC

tilt stability: plasma rotation (due to both ion diamagnetic drift and E �B drift) and ion

gyro-viscosity. The tilt stability observed in past FRC plasmas formed by �-pinches can be

well explained by these two e�ects due to their large E.

Another important conclusion is that FRC plasmas are always likely to be unstable to

at least one global instability with any combination of s and E. Passive or active stabilizers

(coils or conducting shells) are required to stabilize these global modes completely. Theta-

pinch FRC's are subject to the axial shift instability, but it seems to be stabilized by mirror

coils. FRC plasmas made by merging spheromaks29 are likely to be subject to the radial

shift instability due to their oblate shape. A conductive shell is probably needed to stabilize

this mode. The global stability of FRC plasmas with both oblate and prolate shapes and

various s can be explored further in the proposed project SPIRIT (Self-organized Plasma

14



with Induction, Reconnection, and Injection Techniques)30 based on the counter-helicity

spheromak merging.
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APPENDIX: NUMERICAL CALCULATION OF EXTERNAL FIELDS FOR

SOLOVEV EQUILIBRIA

A free-boundary solution for the Solovev FRC equilibrium provides external �elds for

calculation of the tilt and shift instabilities. To obtain the solution we place NC poloidal

�eld coils on a closed contour surrounding the plasma and seek a set of coil currents which

match appropriate boundary conditions at the plasma separatrix.

The total 
ux,  , anywhere in space can be written as separate contributions from the

plasma and coil current sources,  =  p +  c. Axisymmetric Green's functions relate the

current sources to the 
uxes:

 p(Xi; Zi) =
Z Z

J�(X;Z)G(X;Z;Xi; Zi)dXdZ;

where

J� =
1

X
�� = �Xp0:

Here, p0 = p0= 0 is the derivative of the pressure with respect to the poloidal 
ux, and is

constant for the Solovev model. Similarly, the \external 
ux" provided by the poloidal �eld

coils is given by

 c(Xi; Zi) =
NCX
j=1

G(Xj ; Zj;Xi; Zi)Ij:
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Speci�cally, the Xi; Zi are chosen to be NB equally spaced points on the plasma separa-

trix, excluding X = 0, and the NC coils are equally spaced on (X=X0)2 + (Z=Z0)2 = 2�2c , a

contour conformal with the separatrix.

Since  = 0 on the separatrix, matching 
uxes across the plasma-vacuum interface gives

NCX
j=1

GijIj = Ri; (A1)

where

Ri = � p(Xi; Zi); Gij = G(Xi; Zi;Xj; Zj); i = 1; 2; :::::;NB:

The coil currents, Ij, are found by solving Eq.(A1) by the method of Least Squares:

Min
�
W =

NBX
i=1

�i

�NCX
j=1

GijIj �Ri

�2
+ �reg

NC�1X
j=1

(Ij+1 � Ij)
2
�
:

The regularization term multiplying �reg avoids coil-to-coil current oscillation. Typical nu-

merical parameters are NC = 20, NB = 20, �c = 2:0, �reg = 0:01. With suitably chosen

weights, �i, maximum errors Maxij(PGi;jIj)=Ri � 1j < 0:005 are typically obtained (see

Figure 1).
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FIGURES

FIG. 1. Solovev's solution. (a) The internal (external) 
ux is represented by solid (dotted)

lines. The rectangular box indicates rigid body model. (b) The vacuum 
ux produced by coils.

The dotted line represents the separatrix.
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FIG. 2. Three rotating axes (X; Y; Z) of the rigid body model.
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FIG. 3. The dimensionless parameters �tilt and �shift as functions of plasma elongation E.

The lines are �tting functions: �tilt = 0:02E + 0:342 � 0:225=E + 0:0425=E2
� 0:00329=E3 and

�shift = �0:0132� 0:168=E + 0:259=E2
� 0:0917=E3+ 0:0104=E4.
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FIG. 4. The total J�B torque normalized by �X(B
2
0=2�0)R

3
s as a function of E.
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FIG. 5. Stability diagram in M (rotation Mach number) and elongation.
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FIG. 6. Stability diagram in s and elongation with stabilizing e�ect from ion diamagnetic drift.
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(a) Before tilt:

(b) After tilt:

FIG. 7. Schematic views of the ion gyro-viscous forces exerted on the FRC plasma: (a) before

tilt, and (b) after tilt. The size of arrows indicates the force stength.
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FIG. 8. Stability diagram in s and elongation with stabilizing e�ects from ion gyro-viscosity.
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FIG. 9. Stability diagram in s and elongation with stabilizing e�ects from ion diamagnetic drift

and ion gyro-viscosity.
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FIG. 10. Stability diagram with stabilizing e�ects from ion diamagnetic drift, ion gyro-viscosity,

and additional rotation: (a) M < 0 and (b) M > 0.
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FIG. 11. (a) The J �B force normalized by �Z(B2
0=2�0)Rs as a function of E for small axial

shift. (b) Stability diagram for axial shift mode in the parameter space of s and E with ion

gyro-viscosity included.
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FIG. 12. (a) The J�B force normalized by �X(B2
0=2�0)Rs as a function of E for small radial

shift. (b) Stability diagram for radial shift in the parameter space of s and E with ion gyro-

viscosity included.
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FIG. 13. Comparison of theoretical predictions of tilt stability diagram with experimental

observations of stable FRC plasmas.
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